Как решить систему дифференциальных уравнений в maple
Перейти к содержимому

Как решить систему дифференциальных уравнений в maple

  • автор:

Глава 7

Дифференциальные уравнения лежат в основе математического моделирования различных, в том числе физических, систем и устройств [1, 38, 46]. Решению таких уравнений посвящена эта глава. В ней рассмотрено как аналитическое, так и численное решение дифференциальных уравнений различного вида — линейных и нелинейных, классических и специальных, например, в частных производных и с учетом двухсторонних граничных условий. Описание сопровождается множеством наглядных примеров, реализованных в СКМ Maple 9.5/10.

7.1. Введение в решение дифференциальных уравнений

7.1.1. Дифференциальные уравнения первого порядка

Дифференциальные уравнения (ДУ) это уравнения, связывающие неизвестную функцию с какими либо ее производными и, возможно, с независимыми переменными. Если неизвестная функция зависит только от одной независимой переменной, то такое уравнение называется обыкновенным дифференциальным уравнением, а если от двух и более многих независимых переменных — дифференциальным уравнением в частных производных.

Простейшее дифференциальное уравнение первого порядка

(7.1)

в общем случае имеет множество решений в виде зависимостей y(х). Однако можно получить единственное решение, если задать начальные условия в виде начальных значений х0 и у0= у(х0). Это решение может быть аналитическим, конечно-разностным или численным.

7.1.2. Решение дифференциального уравнения радиоактивного распада

В качестве примера аналитического решения дифференциального уравнения первого порядка (файл der) запишем дифференциальное уравнение радиоактивного распада атомов (N — число атомов в момент времени t, g=1/c):

> restart: deq:=diff(N(t),t)=-g*N(t);

Используя функцию dsolve, которая более подробно будет описана чуть позже, получим его общее аналитическое решение:

> dsolve(deq, N(t));

В решении присутствует произвольная постоянная _С1. Но ее можно заметить на постоянную N(0)=N0, означающую начальное число атомов в момент t=0:

Если конкретно N0=100 и g=4, то получим:

> No := 100; g:=3;

Nо:=100 g:=3

Хотя dsolve выдает решение N(t) в символьном виде, оно пока недоступно для построения графика этого решения или просто вычисления в любой точке. Однако, используя функции assign или subs можно сделать это решение доступным. Например, используем такую конструкцию:

> s: =dsolve(< deq, N(0) =-No>, N (t)); assign(s);

s: = N(t) = 100 e (-3t)

Теперь мы можем воспользоваться полученной зависимостью N(t) и построить график ее:

> plot(N(t),t=0..3,color=black);

Этот график, который читатель может просмотреть сам, описывает хорошо известным апериодическим экспоненциальный закон уменьшения числа атомов вещества в ходе его радиоактивного распада. Подобные зависимости, кстати, характерны для напряжения на конденсаторе С при его разряде через резистор R, для тока в LA-цепи и для многих простых физических явлений, описывающихся дифференциальным уравнением первого порядка.

7.1.3. Модели популяций Мальтуса и Ферхюльса-Пирла

Еще одним классическим примером применения дифференциального уравнения первого порядка является давно известная и довольно грубая модель популяции Мальтуса. Не вдаваясь в хорошо известное описание этой модели, отметим, что она описывает численность особей или их биомассу x(t) в любой момент времени (для момента времени х(0)=N) Эта зависимость характеризуется коэффициентами рождаемости α и смертности β. При этом вводится их разность k=α-β.

Представим задание дифференциального уравнения динамики популяций по модели Мальтуса и его решение в аналитическом виде:

> restart:deq := diff(х(t),t) — k*x(t)=0;

> dsol1 := dsolve();

dsol1 := x(t) = Ne (k1)

Нетрудно заметить, что решение этого уравнения аналогично решению дифференциального уравнения радиоактивного распада и описывается также экспоненциальной функций. Однако, в зависимости от того, какой фактор (рождаемость или смертность) преобладает наблюдается либо экспоненциальный рост, либо экспоненциальный спад биомассы популяций.

Более правдоподобную модель популяций предложили Ферхюльст и Пирл. Эта модель учитывает (коэффициентом внутривидовую конкуренцию и позволяет учесть приближение популяций к некоторому состоянию равновесия. На рис. 7.1 представлено дифференциальное уравнение динамики популяций Ферхюльста-Пирла. Решения приведены в общем виде, а также для k=g= k/g=1 и разных x(0)=1, 0.5 и 2.

Рис. 7.1. Моделирование популяций по модели Ферхюльста и Пирла

Поведение системы зависит от соотношения k/g и x(0)=N. При их равенстве количество биомассы популяции не меняется. При N>k/g биомасса экспоненциально уменьшается, приближаясь к значению k/g, а при N она экспоненциально возрастает, также приближаясь к k/g.

7.1.4. Системы дифференциальных уравнений

Встроенные в математические системы функции обычно решают систему из обыкновенных дифференциальных уравнений (ОДУ), представленную в форме Коши:

Здесь левая система задает начальные условия, а вторая представляет систему ОДУ.

7.1.5. Сведение ДУ высокого порядка к системам ОДУ первого порядка

Часто встречаются ДУ высокого (n-го) порядка:

y (n) =f(x, у, у’, y», …, y( n-1) ),

Теперь решение этого уравнения можно свести к решению системы ОДУ:

В таком виде ДУ n-го порядка может решаться стандартными средствами решения систем ОДУ, входящими в большинство математических систем.

7.1.6. Решение задачи на полет камня

В качестве примера аналитического решения системы дифференциальных уравнений рассмотрим постановку типичной физической задачи моделирования «Бросок камня», позволяющую описать полет камня, брошенного под углом к горизонту.

Модель должна позволять:

Вычислять положение камня в любой момент времени.

Исходные данные:

Масса камня, начальные координаты, начальная скорость и угол броска мяча.

На основе содержательной модели разрабатывается концептуальная формулировка задачи моделирования. Применительно к нашей задаче движение камня может быть описано в соответствии с законами классической механики Ньютона.

Гипотезы, принятые для модели:

• камень будем считать материальной точкой массой m, положение которой совпадает с центром масс камня;

• движение происходит в поле силы тяжести с постоянным ускорением свободного падения g и описывается уравнениями классической механики Ньютона;

• движение камня происходит в одной плоскости, перпендикулярной поверхность Земли;

• сопротивлением воздуха на первых порах пренебрегаем.

В качестве параметров движения будем использовать координаты (х, у) и скорость v(vx, vy) центра масс камня.

Концептуальная постановка задачи на основе принятых гипотез заключается в определении закона движения материальной точки массой m под действием силы тяжести, если известны начальные координаты точки х0 и ее начальная скорость v0 и угол броска α0.

Таким образом, модель является простой — объект, как материальная точка, не имеет внутренней структуры. Учитывая типичные скорости и высоту броска камня, можно считать постоянным ускорение свободного падения. Переход от трехмерных координат к плоскости значительно упрощает решение задачи. Он вполне допустим, если камень не подкручивается при броске. Пренебрежение сопротивлением воздуха, как будет показано далее, приводит к значительной систематической ошибке результатов моделирования.

Теперь перейдем к составлению математической модели объекта — совокупности математических соотношений, описывающих его поведение и свойства. Из законов и определяющих выражений предметной дисциплины формируются уравнения модели.

По оси x на камень не действуют никакие силы, по оси y — действует сила тяжести. Согласно законам Ньютона имеем уравнения движения по оси x и оси y.

(7.2)

при следующих начальных условиях

Надо найти зависимости x(t), y(y), vx(r), vy(t).

Математическая постановка решения задачи в нашем случае соответствует решению задачи Коши для системы обыкновенных дифференциальных уравнений с заданными начальными условиями. Известно, что решение задачи Коши существует и что оно единственное. Количество искомых переменных равно количеству дифференциальных уравнений. Таким образом, математическая модель корректна.

Решение этой задачи есть в любом учебнике физики. Тем не менее, выполним его средствами системы Maple. Из (7.2) запишем систему ОДУ первого порядка:

(7.3)

После интегрирования получим:

(7.4)

Определив константы интегрирования из начальных условий, окончательно запишем:

Из аналитического решения вытекает, что полет камня при отсутствии сопротивления воздуха происходит строго по параболической траектории, причем она на участках полета камня вверх и вниз симметрична. Необходимые для расчета уравнения заданы в параметрической форме — как зависимости от времени, что, кстати говоря, облегчает моделирование по ним полета камня. Немного позже мы решим эту задачу, используя средства Maple 9.5 для решения систем дифференциальных уравнений.

7.1.7. Классификация дифференциальных уравнений

Дифференциальные уравнения могут быть самого разного вида. На рис. 7.2 представлен раздел справки Maple 9.5 с классификацией дифференциальных уравнений. В ней представлено:

• 20 дифференциальных уравнений первого порядка;

• 25 дифференциальных уравнений второго порядка;

• 6 типов дифференциальных уравнений высшего порядка;

• основные функции решения дифференциальных уравнений.

Рис. 7.2. Классификация дифференциальных уравнений

Эта классификация охватывает большую часть классических дифференциальных уравнений, которые используются в математике и в математической физике. Следует отметить, что речь не идет об отдельных функциях по решению таких уравнений частного вида, а о примерах составления соответствующих уравнений и решении их с помощью небольшого числа функций системы Maple 9.5.

В качестве примера работы с классификатором выберем решение дифференциального уравнения Бернулли. Для этого активизируем на рис. 7.2 гиперссылку с его именем — Bernoulli. Появится окно справки по этому уравнению, показанное на рис. 7.3 с открытой позицией меню Edit.

Рис. 7.3. Окно справки по решению дифференциального уравнения Бернулли

С помощью команды Copy Examples в позиции Edit меню можно перенести примеры решения с окна справки в буфер Clipboard операционной системы Windows. После этого командой Paste в меню Edit окна документа можно перенести примеры в текущий документ — желательно (но не обязательно) новый. Теперь можно наблюдать решение выбранного дифференциального уравнения — рис. 7.4.

Рис. 7.4. Пример решения дифференциального уравнения Бернулли из справки

Возможность выбора и решения с полсотни классических дифференциальных уравнений различного типа дает системе Maple 9.5 преимущества, которые по достоинству оценят пользователи, заинтересованные в знакомстве с такими уравнениями и в их использовании.

В Maple 9.5 средства решения дифференциальных уравнений подверглись значительной переработке. Введены новые методы решения для дифференциальных уравнений Абеля, Риккати и Матье, новые методы инициализации и решения уравнений с кусочными функциями, улучшены алгоритмы решения численными методами. Детальное описание этих новинок можно найти в справке по разделу What’s New…. Это относится и к версии Maple 10.

7.1.8. Функция решения дифференциальных уравнений dsolve

Maple позволяет решать одиночные дифференциальные уравнения и системы дифференциальных уравнений как аналитически, так и в численном виде. Разработчиками системы объявлено о существенном расширении средств решения дифференциальных уравнений и о повышении их надежности в смысле нахождения решений для большинства классов дифференциальных уравнений.

Для решения системы простых дифференциальных уравнений (задача Коши) используется функция dsolve в разных формах записи:

dsolve(ODE, y(x), extra_args)

dsolve(, y(x), extra_args)

dsolve(, , extra_args)

Здесь ODE — одно обыкновенное дифференциальное уравнение или система из дифференциальных уравнений первого порядка с указанием начальных условий, у(х) —функция одной переменной, Ics — выражение, задающее начальные условия, —множество дифференциальных уравнений, — множество неопределенных функций, extra_argument —опция, задающая тип решения.

Параметр extra_argument задает класс решаемых уравнений. Отметим основные значения этого параметра:

• exact — аналитическое решение (принято по умолчанию);

• explicit — решение в явном виде;

• system — решение системы дифференциальных уравнений;

• ICs — решение системы дифференциальных уравнений с заданными начальными условиями;

• formal series — решение в форме степенного многочлена;

• integral transform — решение на основе интегральных преобразований Лапласа, Фурье и др.;

• series — решение в виде ряда с порядком, указываемым значением переменной Order;

• numeric — решение в численном виде.

Возможны и другие опции, подробное описание которых выходит за рамки данной книги. Его можно найти в справке по этой функции, вызываемой командой ?dsolve.

Для решения задачи Коши в параметры dsolve надо включать начальные условия, а при решении краевых задач — краевые условия. Если Maple способна найти решение при числе начальных или краевых условий меньше порядка системы, то в решении будут появляться неопределенные константы вида _С1, _С2 и т.д. Они же могут быть при аналитическом решении системы, когда начальные условия не заданы. Если решение найдено в неявном виде, то в нем появится параметр _Т. По умолчанию функция dsolve автоматически выбирает наиболее подходящий метод решения дифференциальных уравнений. Однако в параметрах функции dsolve в квадратных скобках можно указать предпочтительный метод решения дифференциальных уравнений. Допустимы следующие методы:

> `dsolve/methods`[1];

[quadrature, linear, Bernoulli, separable, inverse_linear, homogeneous, Chini, lin_sym, exact, Abel, pot_sym ]

Более полную информацию о каждом методе можно получить, используя команду ?dsolve,method и указав в ней конкретный метод. Например, команда ?dsolve,linear вызовет появление страницы справочной системы с подробным описанием линейного метода решения дифференциальных уравнений.

7.1.9. Уровни решения дифференциальных уравнений

Решение дифференциальных уравнений может сопровождаться различными комментариями. Команда

infolevel[dsolve] := n:

где n — целое число от 0 до 5 управляет уровнями детальности вывода. По умолчанию задано n = 0. Значение n = 5 дает максимально детальный вывод.

Производные при записи дифференциальных уравнений могут задаваться функцией diff или оператором дифференцирования D. Выражение sysODE должно иметь структуру множества и содержать помимо самой системы уравнений их начальные условия.

Читателю, всерьез интересующемуся проблематикой решения линейных дифференциальных уравнений, стоит внимательно просмотреть разделы справки по ним и ознакомиться с демонстрационным файлом linearoade.mws, содержащим примеры решения таких уравнений в закрытой форме.

7.2. Примеры решения дифференциальных уравнений

7.2.1. Примеры аналитического решение ОДУ первого порядка

Отвлекшись от физики, приведем несколько примеров на составление и решение дифференциальных уравнений первого порядка в аналитическом виде (файл dea):

> dsolve(diff(y(х),х)-а*х=0, y(х));

> dsolve(diff(y(х),х)-y(х)=ехр(-х), y(х));

> dsolve(diff(y(х),х)-y(х)=sin(х)*х, y(х));

> infolevel[dsolve] := 3:

> dsolve(diff(y(x),x)-y(x)=sin(x)*x, y(x));

Methods for first order ODEs:

Trying classification methods —

trying a quadrature

trying 1st order linear

Обратив внимание на вывод в последнем примере. Он дан при уровне вывода n=3

Следующие примеры иллюстрируют возможность решения одного и того же дифференциального уравнения ode_L разными методами:

> restart: ode_L := sin(x)*diff(y(x),x)-cos(x)*y(x)=0;

> dsolve(ode_L, [linear], useInt);

y(x) = _C1 sin(x)

> dsolve(od_L, [separable], useInt);

ln(sin(x)) — ln(у(x)) + _C1 = 0

> mu := intfactor(ode_L);

> dsolve(mu*ode_L, [exact], useInt);

y(x) = -_C1 sin(x)

Разумеется, приведенными примерами далеко не исчерпываются возможности аналитического решения дифференциальных уравнений.

7.2.2. Полет тела, брошенного вверх

Из приведенных выше примеров видно, что для задания производной используется ранее рассмотренная функция diff. С помощью символа $ в ней можно задать производную более высокого порядка.

В соответствии со вторым законом Ньютона многие физические явления, связанные с движением объектов, описываются дифференциальными уравнениями второго порядка. Ниже дан пример задания и решения такого уравнения (файл

dem), описывающего движение тела, брошенного вверх на высоте h0 со скоростью v0 при ускорении свободного падения g:

> restart; eq2:=diff(h(t),t$2) = -g;

> dsolve(,h(t));assign(s2);

Итак, получено общее уравнение для временной зависимости высоты тела h(t). Разумеется, ее можно конкретизировать, например, для случая, когда g=9,8, h0=10 и v0=100:

> s2:=dsolve(,h(t));assign(s2);

> plot(h(t),t=0..20,color=black);

Зависимость высоты тела от времени h(t) представлена на рис. 7.5. Нетрудно заметить, что высота полета тела вначале растет и достигнув максимума начинает снижаться. Оговоримся, что сопротивление воздуха в данном примере не учитывается, что позволяет считать задачу линейной. Полученное с помощью Maple 9.5 для этого случая решение совпадает с полученным вручную в примере, описанном в разделе 7.1.3.

Рис. 7.5. Зависимость высоты полета тела от времени h(t)

7.2.3. Поведение идеального гармонического осциллятора

Еще одним классическим применением дифференциальных уравнений второго порядка является решение уравнение идеального гармонического осциллятора (файл deio):

> restart:eq3:=diff(y(t),t$2)=-omega^2*y(t);

> dsolve(eq3,y(t));

у(t) = _C1 sin(ω) + _C2 cos(ω)

> s:=dsolve(, y(t));

> assign(s);omega:=2;

> plot(y(t),t=0..20,color=black);

График решения этого уравнения (рис. 7.6) представляет хорошо известную синусоидальную функцию. Интересно, что амплитуда колебаний в общем случае отлична от 1 и зависит от значения у(0) — при у(0)=0 она равна 1 (в нашем случае синусоида начинается со значение у(0)=-1). Подобным осциллятором может быть LC-контур или механический маятник без потерь.

Рис. 7.6. Решение дифференциального уравнения идеального осциллятора

7.2.4. Дополнительные примеры решения дифференциальных уравнений второго порядка

Ниже представлено решение еще двух дифференциальных уравнений второго порядка в аналитическом виде (de2a):

> restart: dsolve(diff(y(x),x$2)-diff(y(x),x)=sin(x),y(x));

у(x) = -½sin(x) + ½cos(x) + e x _C1 + _C2

> de:=m*diff(y(x),x$2)-k*diff(y(x),x);

ух0:= у(0) = 0, у(1) = 1

Ряд примеров на применение дифференциальных уравнений второго порядка при решении практических математических и физических задач вы найдете в главе 11.

7.2.5. Решение систем дифференциальных уравнений

Функция dsolve позволяет также решать системы дифференциальных уравнений. Для этого она записывается в виде

dsolve(ODE_sys, optional_1, optional_2. )

Здесь ODE_sys — список дифференциальных уравнений, образующих систему, остальные параметры опциональные и задаются по мере необходимости. Они могут задавать начальные условия, явно представлять искомые зависимости, выбирать метод решения и т.д. Детали задания опциональных параметров можно найти в справке.

На рис. 7.7 представлено решение системы из двух дифференциальных уравнений различными методами — в явном виде, в виде разложения в ряд и с использованием преобразования Лапласа. Здесь следует отметить, что решение в виде ряда является приближенным. Поэтому полученные в данном случае аналитические выражения отличаются от явного решения и решения с применением преобразования Лапласа.

Рис. 7.7. Решение системы из двух дифференциальных уравнений различными методами

Следует отметить, что, несмотря на обширные возможности Maple в области аналитического решения дифференциальных уравнений, оно возможно далеко не всегда. Поэтому, если не удается получить такое решение, полезно попытаться найти решение в численном виде. Практически полезные примеры решения дифференциальных уравнений, в том числе с постоянными граничными условиями, вы найдете в Главе 11.

7.2.6. Модель Стритера-Фелпса для динамики кислорода в воде

В качестве еще одного примера решении системы из двух дифференциальных уравнений рассмотрим модель Стритера-Фелпса, предложенную для описания динамики содержания растворенного в воде кислорода. Описание этой модели можно найти в [41]. Ниже представлено задание этой модели в виде системы из двух дифференциальных уравнений и их аналитическое решение (файл demp):

> sys := diff(x1(t),t) = K1*(C-x1(t))-K2*x2(t), diff(x2(t),t) = -K2*x2(t);

> dsol := dsolve();

Здесь: x1(t) — концентрация в воде растворенного кислорода в момент времени t; x2(t) — концентрация биохимического потребления кислорода (БПК), С — концентрация насыщения воды кислородом, K1 — постоянная скорости аэрации, K2 — постоянная скорости уменьшения (БПК), a — начальное значение x1(t) и b — начальное значение х2(t) при t=0.

В данном случае получены два варианта аналитического решения — основное и упрощенное с помощью функции simplify. Читатель может самостоятельно построить графики зависимостей x1(t) и x2(t).

7.3. Специальные средства решения дифференциальных уравнений

7.3.1. Численное решение дифференциальных уравнений

К сожалению, аналитического решения в общем случае нелинейные дифференциальные уравнения не имеют. Поэтому их приходится решать численными методами. Они удобны и в том случае, когда решение надо представить числами или, к примеру, построить график решения. Поясним принципы численного решения.

Для этого вернемся к дифференциальному уравнению (7.1). Заменим приращение dx на малое, но конечное приращение dx=h. Тогда приращение dy будет равно

Если, к примеру, известно начальное значение у=у0, то новое значение у будет равно

Распространяя этот подход на последующие шаги решения получим конечно-разностную формулу для решение приведенного уравнения в виде:

Эта формула известна как формула простого метода Эйлера первого порядка для решения дифференциального уравнения (7.1). Можно предположить (так оно и есть), что столь простой подход дает большую ошибку — отбрасываемый член порядка O(h 2 ). Тем не менее, физическая и математическая прозрачность данного метода привела к тому, что он широко применяется на практике.

Существует множество более совершенных методов решения дифференциальных уравнений, например, усовершенствованный метод Эйлера, метод трапеций, метод Рунге-Кутта, метод Рунге-Кутта-Фельберга и др. Ряд таких методов реализован в системе Maple и может использоваться при численном решении дифференциальных уравнений и систем с ними.

Для решения дифференциальных уравнений в численном виде в Maple используется та же функция dsolve с параметром numeric или type=numeric. При этом решение возвращается в виде специальной процедуры, по умолчанию реализующей широко известный метод решения дифференциальных уравнений Рунге-Кутта-Фельберга порядков 4 и 5 (в зависимости от условий адаптации решения к скорости его изменения). Эта процедура называется rkf45 и символически выводится (без тела) при попытке решения заданной системы дифференциальных уравнений. Последнее достаточно наглядно иллюстрирует рис. 7.8.

Рис. 7.8. Решение системы дифференциальных уравнений численным методом rkf45 с выводом графика решения

Указанная процедура возвращает особый тип данных, позволяющих найти решение в любой точке или построить график решения (или решений). Для графического отображения Maple 9.5 предлагает ряд возможностей и одна из них представлена на рис. 7.8 — см. последнюю строку ввода. При этом используется функция plot[odeplot] из пакета odeplot, предназначенного для визуализации решений дифференциальных уравнений. Можно воспользоваться и функцией plot, выделив тем или иным способом (примеры уже приводились) нужное решение.

В список параметров функции dsolve можно явным образом включить указание на метод решения, например опция method=dverk78 задает решение непрерывным методом Рунге-Кутта порядка 7 или 8. Вообще говоря, численное решение дифференциальных уравнений можно производить одним из следующих методов:

• classical — одна из восьми версий классического метода, используемого по умолчанию;

• rkf45 — метод Рунге-Кутта 4 или 5 порядка, модифицированный Фелбергом;

• dverk78 — непрерывный метод Рунге-Кутта порядка 7 или 8;

• gear — одна из двух версий одношагового экстраполяционного метода Гира;

• mgear — одна из трех версий многошагового экстраполяционного метода Гира;

• lsode — одна из восьми версий Ливенморского решателя жестких дифференциальных уравнений;

• taylorseries — метод разложения в ряд Тейлора.

Обилие используемых методов расширяет возможности решения дифференциальных уравнений в численном виде. Большинство пользователей Maple вполне устроит автоматический выбор метода решения по умолчанию. Однако в сложных случаях, или когда заведомо желателен тот или иной конкретный алгоритм численного решения, возможна прямая установка одного из указанных выше методов.

С помощью параметра ‘abserr’=aerr можно задать величину абсолютной погрешности решения, а с помощью ‘minerr’=mine — минимальную величину погрешности. В большинстве случаев эти величины, заданные по умолчанию, оказываются приемлемыми для расчетов.

Maple реализует адаптируемые к ходу решения методы, при которых шаг решения h автоматически меняется, подстраиваясь под условия решения. Так, если прогнозируемая погрешность решения становится больше заданной, шаг решения автоматически уменьшается. Более того, система Maple способна автоматически выбирать наиболее подходящий для решаемой задачи метод решения.

Еще один пример решения системы дифференциальных уравнений представлен на рис. 7.9. Здесь на одном графике представлены зависимости y(x) и z(x) представляющие полное решение заданной системы. При этом процедура имеет особый вид listprocedure и для преобразования списка выходных данных в векторы решения Y и Z используется функция subs.

Рис. 7.9. Решение системы дифференциальных уравнений численным методом с выводом всех графиков искомых зависимостей

Для решения достаточно сложных задач полезны специальная структура DESol для решения дифференциальных уравнений и инструментальный пакет SEtools, содержащий самые изысканные средства для графической визуализации результатов решения дифференциальных уравнений. Эти средства мы более подробно рассмотрим в дальнейшем.

При решении некоторых задач физики и радиоэлектроники выбираемый по умолчанию шаг изменения аргумента х или t-h может привести к неустойчивости решения. Неустойчивости можно избежать рядом способов. Можно, например, нормировать уравнения, избегая необходимости использования малого шага. А можно задать заведомо малый шаг. Например, при method=classical для этого служит параметр stepsize=h.

7.3.2. Дифференциальные уравнения с кусочными функциями

Состоящие из ряда кусков кусочные функции широко используются при математическом моделировании различных физических объектов и систем. В основе такого моделирования обычно лежит решение дифференциальных уравнений, описывающих поведение объектов и систем. Покажем возможность применения кусочных функций для решения дифференциальных уравнений.

Ниже представлено задание дифференциального уравнения первого порядка, содержащего кусочную функцию:

> eq := diff(y(х), х)+ piecewise(х

Используя функцию dsolve, выполним решение этого дифференциального уравнения:

> dsolve(eq, y(х));

Нетрудно заметить, что результат получен также в форме кусочной функции, полностью определяющей решение на трех интервалах изменения х.

Приведем пример решения дифференциального уравнения второго порядка с кусочной функцией:

> eq := diff(y(х), х$2) + x*diff(y(x), х) + y(х) = piecewise(х > 0, 1);

> dsolve(eq, y(х));

В заключении этого раздела приведем пример решения нелинейного дифференциального уравнения Риккати с кусочной функцией:

> eq := diff(у(х), х)=piecewise(х>0, х)*у(х)^2;

В ряде случаев желательна проверка решения дифференциальных уравнений. Ниже показано, как она делается для последнего уравнения:

> simplify(eval(subs(%, eq)));

Как видно из приведенных достаточно простых и наглядных примеров, результаты решения дифференциальных уравнений с кусочными функциями могут быть довольно громоздкими. Это, однако, не мешает эффективному применению функций этого класса.

7.3.3. Структура неявного представления дифференциальных уравнений — DESol

В ряде случаев иметь явное представление дифференциальных уравнений нецелесообразно. Для неявного их представления в Maple введена специальная структура

DESol(expr,vars)

где exprs — выражение для исходной системы дифференциальных уравнений, vars — заданный в виде опции список переменных (или одна переменная).

Структура DESol образует некоторый объект, дающий представление о дифференциальных уравнениях, чем-то напоминающее RootOf. С этим объектом можно обращаться как с функцией, то есть его можно интегрировать, дифференцировать, получать разложение в ряд и вычислять численными методами.

На рис. 7.10 показаны примеры применения структуры DESol.

Рис. 7.10. Примеры применения структуры DESol

Обратите внимание на последний пример — в нем структура DESol использована для получения решения дифференциального уравнения в виде степенного ряда.

7.4. Инструментальный пакет решения дифференциальных уравнений DEtools

7.4.1. Средства пакета DEtools

Решение дифференциальных уравнений самых различных типов — одно из достоинств системы Maple. Пакет DEtools предоставляет ряд полезных функций для решения дифференциальных уравнений и систем с такими уравнениями. Для загрузки пакета используется команда:

> with(DEtools):

Этот пакет дает самые изысканные средства для аналитического и численного решения дифференциальных уравнений и систем с ними. По сравнению с версией Maple V R5 число функций данного пакета в Maple 9.5 возросло в несколько раз. Многие графические функции пакета DEtools были уже описаны. Ниже приводятся полные наименования тех функций, которые есть во всех реализациях системы Maple:

• DEnormal — возвращает нормализованную форму дифференциальных уравнений;

• DEplot — строит графики решения дифференциальных уравнений;

• DEplot3d — строит трехмерные графики для решения систем дифференциальных уравнений;

• Dchangevar — изменение переменных в дифференциальных уравнениях;

• PDEchangecoords — изменение координатных систем для дифференциальных уравнений в частных производных;

• PDEplot — построение графиков решения дифференциальных уравнений в частных производных;

• autonomous — тестирует дифференциальные уравнения на автономность;

• convertAlg — возвращает список коэффициентов для дифференциальных уравнений;

• convertsys — преобразует систему дифференциальных уравнений в систему одиночных уравнений;

• dfieldplot — строит график решения дифференциальных уравнений в виде векторного поля;

• indicialeq — преобразует дифференциальные уравнения в полиномиальные;

• phaseportrait — строит график решения дифференциальных уравнений в форме фазового портрета;

• reduceOrder — понижает порядок дифференциальных уравнений;

• regularsp — вычисляет регулярные особые точки для дифференциальных уравнений второго порядка;

• translate — преобразует дифференциальные уравнения в список операторов;

• untranslate — преобразует список операторов в дифференциальные уравнения;

• varparam — находит общее решение дифференциальных уравнений методом вариации параметров.

Применение этих функций гарантирует совместимость документов реализаций Maple R5, 6 и 9.

7.4.2. Консультант по дифференциальным уравнениям

Для выявления свойств дифференциальных уравнений в Maple 9.5 в составе пакета DEtools имеется консультант (адвизор), вводимый следующей функцией:

odeadvisor(ODE) odeadvisor(ODE, y(х), [type1, type2. ], help)

Здесь ODE — одиночное дифференциальное уравнение, y(x) — неопределенная (определяемая функция), type1, type2, … — опционально заданные множество типов, которые классифицируются и help — опционально заданное указание на вывод страницы справки по методу решения.

Примеры работы с классификатором представлены ниже:

> with(DEtools): ODE := x*diff(y(х),х)+а*y(х)+b*х^2;

> odeadvisor(ODE);

> ОDE1 := x*diff(y(х)^2,х)+а*y(х)+b*х^2;

> odeadvisor(ODE1);

[ rational, [_Abel, 2nd type, class В]]

> ODE2 := diff(y(x),x,x,x)+D(g)(y(x))*diff(y(x),x)^3 + 2*g(y(x))*diff(y(x),x) *diff(y(x), x, x)

+ diff(f(x),x)*diff(y(x),x) + f(x)*diff(y(x),x,x) = 0;

> odeadvisor(ODE2,у(x));

[[_3rd_order, exact, _nonlinear], [_3rd order, reducible, _mu_y2]]

7.4.3. Основные функции пакета DEtools

Рассмотрим наиболее важные функции этого пакета. Функция

autonomous(des,vars,ivar)

тестирует дифференциальное уравнение (или систему) des. Ее параметрами, помимо des, являются независимая переменная ivar и зависимая переменная dvar. Следующие примеры поясняют применение этой функции:

> autonomous(sin(z(t)-z(t)^2)*(D@@4)(z)(t)-cos(z(t))-5,z,t);

> DE:=diff(x(s),s)-x(s)*cos(arctan(x(s)))=arctan(s):

> autonomous(DE,,s);

Ниже описание этой функции будет продолжено. Функция Dchangevar используется для обеспечения замен (подстановок) в дифференциальных уравнениях:

Dchangevar(trans, deqns, с_ivar, n_ivar)

Dchangevar(tran1, tran2, . tranN, deqns, с_ivar, n_ivar)

В первом случае trans — список или множество уравнений, которые подставляются в дифференциальное уравнение, список или множество дифференциальных уравнений deqns. При этом civar — имя текущей переменной, n_ivar — имя новой переменной (его задавать необязательно). Во второй форме для подстановки используются уравнения tran1, tran2, …

Ниже представлены примеры применения функции Dchangevar

# Преобразование 1-го типа

> Dchangevar(m(х) = l(х)*sin(x), n(x)=k(x), [D(m)(x)=m(x), (D@@2)(n)(x)=n(x)^2], x);

[D(l)(x)sin(x) + l(x)cos(x) = l(x)sin(x), (D (2) )(k)(x) = k(x) 2

> Dchangevar(c=d, е=sin(f) , , dummy);

# Преобразование 2-го типа

> Dchangevar(t=arctan(tau), diff(x(t), t) = sin(t), t, tau);

D(x)(arctan(x)) = sin(arctan(f))]

Как в maple решить дифференциальное уравнение

Решение обыкновенных дифференциальных уравнений. Примеры решения задачи в Maple Численные методы решения ОДУ

,

Проинтегрируем выписанное уравнение

. (5.2)

Процедура последовательных приближений метода Пикара реализуется согласно следующей схеме

, (5.3)

Пример . Решить методом Пикара уравнение

,

Решение этого уравнения не выражается через элементарные функции.

,

Видно, что при ряд быстро сходится. Метод удобен, если интегралы можно взять аналитически.

Докажем сходимость метода Пикара. Пусть в некоторой ограниченной

области правая частьнепрерывна и, кроме того, удовлетворяет условию Липшица по переменнойт.е.

где — некоторая константа.

В силу ограниченности области имеют место неравенства

Вычтем из (5.3) формулу (5.2), получим для модулей правой и левой

,

.

Окончательно, используя условие непрерывности Липшица, получим

, (5.4)

где — погрешность приближенного решения.

Последовательное применение формулы (5.4) при дает следующую цепочку соотношений при учете того, что

,

,

.

.

Заменяя по формуле Стирлинга, окончательно получим оценку погрешности приближенного решения

. (5.5)

Из (5.4) следует, что при модуль погрешности, т.е.

приближенное решение равномерно сходится к точному.

5.2.2. Методы Рунге-Кутта

Данные методы являются численными.

На практике применяются методы Рунге-Кутта, обеспечивающие пост-

роение разностных схем (методов) различного порядка точности. Наиболее

употребительны схемы (методы) второго и четвертого порядков. Их мы и

Предварительно введем некоторые понятия и определения. Сеткой на

отрезке называется фиксированное множество точек этого отрезка.

Функция, определенная в данных точках, называется сеточной функцией.

Координаты точек удовлетворяют условиям

Точки являются узлами сетки. Равномерной сеткой наназывается множество точек

, ,

При решении дифференциальных уравнений приближенным методом основным является вопрос о сходимости. Применительно к разностным методам традиционно более употребительно понятие сходимости при . Обозначим значения сеточной функциизначения точного решения дифференциального уравнения (5.1) в узле-(являются приближенными значениями). Сходимость приозначает следующее. Фиксируем точкуи строим совокупность сетоктаким образом, чтои(при этом). Тогда считают, что численный метод сходится в точке, если

при ,. Метод сходится на отрезке, если он сходится в каждой точке. Говорят, что метод имеет-й порядок точности, если можно найти такое число, чтопри.

Введем далее понятие невязки или погрешности аппроксимции разностного уравнения, заменяющего заданное дифференциальное уравнение, на решении исходного уравнения, т.е. невязка представляет собой результат подстановки точного решения уравнения (5.1)в разностное уравнение. Например, (5.1) можно заменить следующим простейшим разностным уравнением

, .

Тогда невязка определится следующим выражением

.

Приближенное решение не совпадает вообще говоря с , поэтому невязкав-ой точке не равна нулю. Вводят следующее определение: численный метод аппроксимирует исходное дифференциальное уравнение, еслипри, и имеет-й порядок точности, если.

Доказывается, что порядок точности численного метода решения дифференциального уравнения совпадает с порядком аппроксимации при достаточно общих предположениях.

Теперь перейдем к анализу схем Рунге-Кутта. Сначала обратимся к

схемам второго порядка точности.

Используя формулу Тейлора, решение дифференциального уравнения

(5.1) можно представить в виде

, (5.6)

где обозначено ,,.

Отметим, что согласно (5.1) ,.

производную следующим образом

,

где — пока неизвестные величины. Пусть

Обозначим приближенное значение решения в узле с номером через(именно это решение будет получаться после того, как мы ограничим ряд членами с порядком не выше второго).

Введенные здесь параметры иподлежат определению.

Разлагая правую часть в ряд Тейлора и приводя подобные члены, получим

Условием выбора параметров ипоставим близость выраже-

ния (5.7) ряду (5.6), тогда

, ,.

Один параметр остается свободным. Пусть это будет , тогда

, ,

и окончательно из (5.7) с учетом найденных отношений для и

Соотношение (5.8) описывает однопараметрическое семейство двучленных формул Рунге-Кутта.

В специальной литературе доказывается, что если непрерывна и ограничена вместе со своими вторыми производными, то приближенное решение схемы (5.8) равномерно сходится к точному решению с погрешностью, т.е. схема (5.8) обладает вторым порядком точности.

В практике расчетов используют формулы (5.8) при значениях параметра ,.

Применение формулы (5.9) сводится к следующей последовательности шагов:

1. Вычисляется грубо значение функции (по схеме ломаных)

2. Определяется наклон интегральной кривой в точке ()

3. Находится среднее значение производной функции на шаге

4. Рассчитывается значение функции в ()-м узле

Данная схема имеет специальное название «предиктор — корректор».

Согласно (5.8) получаем

Задача решается посредством следующих шагов:

1. Вычисляется значение функции в половинном узле

.

2.Определяется значение производной в узле

.

3. Находится значение функции в ()-м узле

Помимо рассмотренных выше двучленных схем широкое распространение в практике расчетов имеют схемы Рунге-Кутта четвертого порядка точности. Ниже даются без вывода соответствующие формулы

(5.10)

Схемы с большим числом членов практически не применяются. Пяти-

членные формулы обеспечивают четвертый порядок точности, шестичленные формулы имеют шестой порядок, но их вид весьма сложен.

Погрешности приведенных схем Рунге-Кутта определяются максималь-

ными значениями соответствующих производных.

Оценку погрешностей легко получить для частного случая правой

части дифференциального уравнения

.

В этом случае решение уравнения может быть сведено к квадратуре и

все схемы разностного решения переходят в формулы численного интегри-

рования. Например, схема (5.9) принимает вид

,

то есть имеет вид формулы трапеций, а схема (5.10) переходит в схему

представляющую собой формулу Симпсона с шагом .

Мажорантные оценки погрешности формул трапеций и Симпсона известны (см. раздел 3.2). Из (3.4) и (3.5) видно, что точность схем Рунге-Кутта достаточно высока.

Выбор той или иной из приведенных схем для решения конкретной за-

дачи определяется следующими соображениями. Если функция в

правой части уравнения непрерывна и ограничена, а также непрерывны и

ограничены ее четвертые производные, то наилучший результат достигает-

ся при использовании схемы (5.10). В том случае, когда функция

не имеет названных выше производных, предельный (четвертый) порядок

схемы (5.10) не может быть достигнут, и целесообразным оказывается

применение более простых схем.

Помимо схем Рунге-Кутта практический интерес представляют многошаговые методы, которые можно описать следующей системой уравнений

где , а- числовые коэффициенты,,.

Согласно данному уравнению расчет начинается с . В этом случае получается соотношение вида

т.е. для начала счета надо иметь начальных значений,. Эти значенияприходится вычислять каким-либо другим методом, например, методом Рунге-Кутта.

Среди многошаговых методов наиболее распространен метод Адамса, схема реализации которого следует из (5.11) при идля:

.

При метод Адамса оказывается явным, а при- неявным.

Метод Пикара Пикар Шарль Эмиль (1856-1941) — французский математик.

Этот метод позволяет получить приближенное решение дифференциального уравнения (1) в виде функции, представленной аналитически.

Пусть в условиях теоремы существования требуется найти решение уравнения (1) с начальным условием (2). Проинтегрируем левую и правую части уравнения (1) в границах от до:

Решение интегрального уравнения (9) будет удовлетворять дифференциальному уравнению (1) и начальному условию (2). Действительно, при, получим:

Вместе с тем, интегральное уравнение (9) позволяет применить метод последовательных приближений. Будем рассматривать правую часть формулы (9) как оператор, отображающий всякую функцию (из того класса функций, для которых интеграл, входящий в (9), существует) в другую функцию того же класса:

Если этот оператор является сжимающим (что следует из условия теоремы Пикара), то можно строить последовательность приближений, сходящуюся к точному решению. В качестве начального приближения принимается, и находится первое приближение

Интеграл в правой части содержит только переменную x; после нахождения этого интеграла будет получено аналитическое выражение приближения как функции переменной x. Далее заменим в правой части уравнения (9) y найденным значением и получим второе приближение

и т.д. В общем случае итерационная формула имеет вид

Циклическое применение формулы (10) дает последовательность функций

сходящуюся к решению интегрального уравнения (9) (а, следовательно, и дифференциального уравнения (1) с начальными условиями (2)). Это так же обозначает, что k-й член последовательности (11) является приближением к точному решению уравнения (1) с определенной контролируемой степенью точности.

Заметим, что при пользовании методом последовательных приближений аналитичность правой части дифференциального уравнения не обязательна, поэтому метод этот можно применять и в тех случаях, когда разложение решения дифференциального уравнения в степенной ряд невозможно.

Погрешность метода Пикара

Оценка погрешности k-го приближения дается формулой

где y(x) — точное решение, — константа Липшица из неравенства (4).

На практике метод Пикара используется очень редко. Одна из причин — та, что интегралы, которые необходимо вычислять при построении очередных приближений, чаще всего аналитически не находятся, а применение их для вычисления численных методов так усложняет решение, что становится гораздо удобнее непосредственно применять другие методы, которые изначально являются численными.

Примеры решения задачи в Maple

Задача №1: Методом последовательных приближений найти значение, где — решение дифференциального уравнения: удовлетворяющее начальному условию, на отрезке, приняв шаг (расчет вести до второго приближения).

Дано: — дифференциальное уравнение

Найти: значение

> y1:=simplify (1+int (x+1, x=0…x));

> y2:= simplify (1+int (x+simplify (1+int (x+1, x=0…x))^2, x=0…x));

Найдем значение при x=0,5:

Задача №2: Методом последовательных приближений найти приближенное решение дифференциального уравнения при, удовлетворяющее начальному условию.

Дано: — дифференциальное уравнение

Найти: значение

Будем находить приближенное решение данного ДУ на отрезке с шагом (выбрали произвольно).

Запишем для данного случая формулу вида (10)

> y1:=simplify (1+int (x*1, x=0…x));

>y2:=simplify (1+int (x*simplify (1+int (x*1, x=0…x)), x=0…x));

Аналогично находим третье приближение:

>y3:=simplify (1+int (x*simplify (1+int (x*simplify (1+int (x*1, x=0…x)), x=0…x)), x=0…x));

Найдем приближенное решение данного ДУ при, для этого в третье приближение вместо x, подставим и получим:

Сравним полученный приближенный результат с точным решением ДУ:

По результатам таблицы, видно, что погрешность вычислений очень мала.

Цель работы: сформировать у студентов представление о применении ДУ в различных областях; привить умения решать задачу Коши для ДУ у » = f (x , y ) на отрезке [ a , b ] при заданном начальном условии у 0 = f (x 0) методами Пикара, Эйлера, Рунге – Кутты, Адамса; развить навыки проверки полученных результатов с помощью прикладных программ.

Метод Пикара

: у h = 0,1 методом Пикара с шагом h .

В отчете представить: ход работы, программу – функцию, погрешность, графическую иллюстрацию решения.

1. Вводим данные (рис. 5.1)

a = 1,7 b = 2,7

y 0 = 5,3 i = 0..n

Рис.5.1. Задание исходных данных

2. Задаем функцию, возвращающую значения первой производной по переменной у (рис.5.2).

f derive(y ) =

Рис.5.2. Функция, возвращающая значение первой производной функции

3. Составим функцию, возвращающую решение ДУ методом

Пикара. Здесь: f – исходнаяфункция; f deriv

Производная функции по у ; a ,b – концы отрезка; h – шаг; у 0 –

начальное значение переменной у .

4. Найдем решение ДУ методом Пикара (рис. 5.3).

fnPikan(fn, fn derive, a, b, h, y0)=

Рис. 5.3. Задание функции, возвращающей решение ДУ

методом Пикара (файл fnPikar.mcd)

fnPikar(f, f derive, a, b, 0.1, y0) =

7,78457519486·10 -11
5,3
5,46340155616
5,62650688007
5,78947945853
5,95251650231
6,11584391144
6,27971330675
6,44440084325
6,61020759752
6,77746140952
6,94652015221

Рис. 5.4. Нахождение численного решения ДУ методом Пикара

Метод Эйлера и его модификации

у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Эйлера и усовершенствованным методом Эйлера с шагами h и h /2.

Ход решения задачи по методу Эйлера приведен на рис. 5.5 – 5.7.

а = 1,7 b = 2,7 у0 = 5,3

y 0 = y0 x i = a + ih h2 = 0,05

Рис5.5. Фрагмент рабочего листа Маthcad с решением

уравнения методом Эйлера с шагом h и h /2 и графической

визуализацией метода Эйлера.

1. Составим программу, реализующую метод Эйлера(рис.

Рис.5.6. Листинг программы, реализующий метод Эйлера

2. Получим решение ДУ методом Эйлера(рис. 5.7.).

ES h = eyler(f, a, b, h, y0)

ES h2 = eyler(f, a, b, , y0)

Рис. 5.7. Нахождение численного решения ДУ методом Эйлера

Функцию, возвращающую решение ДУ усовершенствованным методом Эйлера, составить самостоятельно.

Рис. 5.8. Решение ДУ усовершенствованным методом

Эйлера с шагами h и h /2

5.3. Метод Рунге – Кутты

На практике наиболее часто используют метод Рунге – Кутты четвертого порядка.

Решить задачу Коши для ДУ на отрезке при заданном НУ у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Рунге – Кутты четвертого порядка с шагом h и 2h .

В отчете представить: ход работы, программу функцию, погрешность, графическую иллюстрацию решения и оценку погрешности приближения.

1. Вводим данные задачи (рис. 5.9).

a = 1,7 b = 2,7

Рис.5.9. Задание исходных данных

2. Составим функцию, возвращающую решение ДУ первого порядка методом Рунге – Кутты. Здесь: fn – заданная функция; a , b – концы отрезка; h – шаг; y 0 – начальное значение функции.

3. Найдем решение ДУ первого порядка, используя встроенные функции Mathcad (рис. 5.10).

RK h = fnRungeKutta(f, a, b, h, y0)

RK 2h = fnRungeKutta(f, a, b, 2h, y0)

Рис. 5.10. Листинг функции, возвращающей численное

решение ДУ методом Рунге–Кутты

Метод Адамса

Решить задачу Коши для ДУ на отрезке при заданном НУ у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Адамса с шагом h .

В отчете представить: ручной счет, программу – функцию, погрешность, графическую иллюстрацию решения и оценку погрешности приближения.

1. Найдем первые четыре числа по формуле Рунге–Кутты (рис. 5.11).

y i = fnRungeKutta(f, a, b, h, y0) i

Рис. 5.11. Вычисление первых четырех значений численного решения по формуле Рунге–Кутты

2. Составим функцию, реализующую метод Адамса (рис. 2.10.3). Здесь a , b – концы отрезка; y 1 – начальное значение функции; h – шаг.

Рис. 5.12. Функция, возвращающая численное решение

ДУ методом Адамса

3. Графическая иллюстрация решения ДУ разными методами представлена на рис. 5.13.

Рис. 5.13. Визуализация решения ДУ разными методами

Вопросы по теме

1. Что значит – решить задачу Коши для ДУ первого порядка?

2. Графическая интерпретация численного решения ДУ.

3. Какие существуют методы решения ДУ в зависимости от

формы представления решения?

4. В чем заключается суть принципа сжимающих

5. Рекуррентная формула метода Пикара.

6. В чем заключается суть метода ломаных Эйлера?

7. Применение, каких формул позволяет получить значения

искомой функции по методу Эйлера?

8. Графическая интерпретация метода Эйлера и

усовершенствованного метода Эйлера. В чем их отличие?

9. В чем заключается суть метода Рунге–Кутты?

10. Как определить количество верных цифр в числе,

являющемся решением ДУ методом Эйлера,

усовершенствованного метода Эйлера, Пикара, Рунге–

Задание к лабораторной работе № 5

Решить задачу Коши для ДУ y ’ = f (x , y ) на отрезке [a , b ] при заданном НУ у (а ) = с и шаге интегрирования h (исходные параметры заданы в табл. 2.10.1):

1) методом Эйлера и усовершенствованным методом Эйлера с шагом h и h /2;

2) методом Рунге–Кутты с шагом h и 2h ;

3) методом Адамса;

4) методом Пикара.

Решение должно содержать: ход работы, программу метода, графическое решение уравнения и оценка погрешности приближения. В числах оставлять 5 цифр после запятой.

Таблица 5.1. Варианты заданий для выполнения самостоятельной работы

f(x , y ) [a , b ] y 0 h
3х 2 + 0,1ху у (0) = 0,2 0,1
0,185(x 2 + cos(0,7x )) + 1,843y у (0,2) = 0,25 0,1
у (1,6) = 4,6 0,1
у (0,2) = 1,1 0,1
у (1,4) = 2,5 0,1
у (1,7) = 5,3 0,1
у (2,6) = 3,5 0,2
у (2) = 2,3 0,1
1,6 + 0,5y 2 у (0) = 0,3 0,1
у (1,8) = 2,6 0,1
у (2,1) = 2,5 0,1
e 2x + 0,25y 2 у (0) = 2,6 0,05
[- 2; -1] у (-2) = 3 0,1
0,133·(x 2 + sin(2x )) + 0,872y у (0,2) = 0,25 0,1
sin(x + y ) +1,5 у (1,5) = 4,5 0,1
у (0,4) = 0,8 0,1
2,5x + cos(y + 0,6) у (1) = 1,5 0,2
cos(1,5y +x ) 2 + 1,4 у (1) = 1,5 0,1
у (1,5) = 2,1 0,05
cos y + 3x у (0) = 1,3 0,1
cos(1,5xy 2) – 1,3 [-1; 1] у (-1) = 0,2 0,2
у (1,6) = 4,6 0,1
e -(y – 1) + 2x у (0) = 0,3 0,05
1 + 2y sin xy 2 у (1) = 0 0,1
у (0) = 0 0,1
0,166(x 2 + sin(1,1x )) + 0,883y у (0,2) = 0,25 0,1
у (1,7) = 5,6 0,1
у (1,4) = 2,5 0,1
у (0,6) = 0,8 0,1
у (1) = 5,9 0,1
1 + 0,8y sin x — 2y 2 у (0) = 0 0,1
у (0,5) = 1,8 0,1
у (1,2) = 1,8 0,1
1 + 2,2 · sin x + 1,5y 2 у (0) = 0 0,1
у (0) = 0 0,1
у (0) = 0 0,1
у (0) = 0 0,1
0,2x 2 + y 2 у (0) = 0,8 0,1
x 2 + y у (0) = 0,4 0,1
xy + 0,1y 2 у (0) = 0,5 0,1

Основная литература :

Алексеев Г.В., Вороненко Б.А., Лукин Н.И. Математические методы в

пищевой инженерии: Учебное пособие. – СПб.: «Лань», 2012. – 212 с.

Алексеев Г.В. Математические методы в инженерии: Учеб.-метод. пособие. – СПб.: НИУ ИТМО; ИХиБТ. 2012. – 39 с.

Алексеев Г.В., Холявин И.И. Численное экономико-математическое моделирование и оптимизация: учебное пособие для вузов, ГИЭФПТ, 2011, 211 с.

Макаров Е.Г. Mathcad: Учебный курс. – СПб.: Питер, 2009. — 384 с.

дополнительная литература :

Поршнев С.В.,Беленкова И.В. Численные методы на базе Mathcad. –

СПб.: БХВ-Петербург, 2005. – 464 с.

Агапьев Б.Д., Белов В.Н., Кесаманлы Ф.П., Козловский В.В., Марков С.И. Обработка экспериментальных данных: Учеб. пособие / СПбГТУ. СПб., 2001.

ГореловаГ.В. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel. – М.: Феникс, 2005. – 476 с.

Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий.-М.: Наука, 1976

Асатурян В.И. Теория планирования эксперимента.-М.: Радио и связь, 1983

Бродский В.З. Введение в факторное планирование эксперимента.-М.: Наука, 1976

Демиденко Е.З. Линейная и нелинейная регрессия.-М.: Финансы и статистика, 1981

Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента.-Минск: БГУ, 1982

Маркова Е.В., Лисенков А.Н. Комбинаторные планы в задачах многофакторного эксперимента.-М.: Наука,1979

Фролькис В.А. Линейная и нелинейная оптимизация.-СПб. 2001. 306 с.

Курицкий Б.Я. Поиск оптимальных решений средствами Excel 7.0.-СПб.: BHV,1997,384с

программное обеспечение и Интернет-ресурсы:

http://www.open-mechanics.com/journals — Процессы и аппараты пищевых производств

http://www.spbgunpt.narod.ru/ur_gigm.htm — Механика жидкости и газа, гидравлика и гидравлические машины

http://elibrary.ru/defaultx.asp — научная электронная библиотека «Elibrary»

1.Лабораторная работа №1: Теория приближенных вычислений

1.1. Абсолютная и относительная погрешности

1.2. Погрешность округленного числа

1.3. Погрешности арифметических действий

1.4. Погрешности элементарных функций

1.5. Способ границ

1.6. Обратная задача теории погрешностей

1.7. Вопросы по теме

1.8. Задания к лабораторной работе №1

2.Лабораторная работа №2:Численные методы решения

1.2. Метод касательных

1.3. Метод простой итерации

1.4. Вопросы по теме

1.5. Задания к лабораторной работе №2

3.Лабораторная работа №3: Численные методы решения систем

3.1. Метод Ньютона

3.2. Вопросы по теме

3.3. Задание к лабораторной работе №3

4.Лабораторная работа№4: Численное интегрирование

4.1. Метод прямоугольников

4.2. Метод Симпсона

4.3. Метод трапеций

4 .4. Метод Монте – Карло

4.5. Вопросы по теме

4.6. Задание к лабораторной работе №4

5. Лабораторная работа №5: Решение обыкновенных дифференциальных уравнений

5.1. Метод Пикара

5.2. Метод Эйлера и его модификации

5.3. Метод Рунге – Кутты

Постановка задачи

47. Метод Пикара последовательных приближений

55. Система дифференциальных уравнений (метод Пикара)

Это приближенный метод решения, являющийся обобщением метода последовательных приближений (см. главу V, § 2). Рассмотрим задачу Коши для уравнения первого порядка

Интегрируя дифференциальное уравнение, заменим эту задачу эквивалентным ей интегральным уравнением типа Вольтерра

Решая это интегральное уравнение методом последовательных приближений, получим итерационный процесс Пикара

(приближенное решение, в отличие от точного, мы будем обозначать через у). На каждой итерации этого процесса интегрирование выполняется либо точно, либо численными методами, описанными в главе IV.

Докажем сходимость метода, предполагая, что в некоторой ограниченной области правая часть непрерывна и удовлетворяет по переменной и условию Липшица

Поскольку область ограничена, то выполняются соотношения Обозначим погрешность приближенного решения через Вычитая (8) из (9) и используя условие Липшица, получим

Решая это рекуррентное соотношение и учитывая, что найдем последовательно

Отсюда следует оценка погрешности

Видно, что при , т. е. приближенное решение равномерно сходится к точному во всей области .

Пример. Применим метод Пикара к задаче Коши для уравнения (3), решение которого не выражается через элементарные функции

В этом случае квадратуры (9) вычисляются точно, и мы легко получаем

и т. д. Видно, что При эти приближения быстро сходятся и позволяют вычислить решение с высокой точностью,

Из этого примера видно, что метод Пикара выгодно применять, если интегралы (9) удается вычислить через элементарные функции. Если же правая часть уравнения (7) более сложна, так что эти интегралы приходится находить численными методами, то метод Пикара становится не слишком удобным.

Метод Пикара легко обобщается на системы уравнений способом, описанным в п. 2. Однако на практике чем выше порядок системы, тем реже удается точно вычислять интегралы в (9), что ограничивает применение метода в этом случае.

Имеется много других приближенных методов. Например, С. А. Чаплыгин предложил метод, являющийся обобщением алгебраического метода Ньютона на случай дифференциальных уравнений. Другой способ обобщений метода Ньютона предложил Л. В. Канторович в 1948 г. В обоих этих методах, так же как и в методе Пикара, итерации выполняются при помощи квадратур. Однако квадратуры в них имеют гораздо более сложный вид, чем (9), и редко берутся в элементарных функциях. Поэтому эти методы почти не применяют.

Решение дифференциальных уравнений в частных производных методом функционального программирования в Maple

Решение дифференциальных уравнений в частных производных методом функционального программирования в Maple

Другие курсовые по предмету

Решение Дифференциальных уравнений в частных производных методом функционального программирования в maple

Курсовая работа посвящена решению дифференциальных уравнений в частных производных методом функционального программирования в прикладном математическом пакете Maple.

Составлены таблицы типов информации и типы операций, требующиеся при формальном построении решения дифференциального уравнения в частных производных.

На примере были рассмотрены функциональные алгоритмы построения формальных решений одномерных и двумерных уравнений параболического типа методами, такими как метод разделенных переменных, методы Грина и другие. В приложении показаны примеры решения неоднородных уравнений параболического типа методом Грина.

Работа состоит из введения, 3 разделов, 2 таблиц, заключения, библиографического списка из 4 источников, одного приложения, в котором приведена реализация примеров решения уравнений.

.Построение формального решения на входном Maple-языке

.Метод разделения переменных

.Метод функций Грина и другие методы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Прикладной математический пакет MAPLE обладает большим набором инструментов для работы с дифференциальными уравнениями в частных производных. Среди них: установление порядка уравнения, исследование на возможность разделения переменных, определение условий поиска решения в виде суммы или произведения функций, получение решения из функций, получаемых командой pdsolve для разделенных уравнений, выполнение замены переменных и различных подстановок и т.п.

Между тем последовательное решение дифференциальных уравнений в частных производных (даже в самых простых случаях) представляет собой сложную комплексную задачу, требующую специальных математических навыков, корректного учета начальных и граничных условий, проведения исследования полученных решений. При этом трудоемкие разделы математики — векторный анализ, специальные функции, теория рядов, интегральные преобразования и другие — являются необходимыми средствами для решения задач математической физики. Заметим, что эти математические инструменты высокоразвиты в MAPLE и удобны для применения, по их использованию в научных исследованиях и образовании имеется обширная литература. Проблема же решения дифференциальных уравнений в частных производных с использованием математических пакетов в виду ее сложности до сих пор требует особых подходов и разработок. При этом оказывается, что для большого числа задач с использованием символьного MAPLE-процессора можно составить достаточно универсальные алгоритмы, с помощью которых на входном MAPLE-языке можно запрограммировать формальное построение решения дифференциальных уравнений в частных производных. Построенные общие решения могут быть программными же средствами использованы для конкретных физических задач.

1. Построение формального решения на входном Maple-языке

Проблема решения дифференциальных уравнений в частных производных средствами MAPLE представляет собой программную задачу, сочетающую использование инструментов пакета с необходимыми дополнительными алгоритмами: учет начальных и граничных условий (НУ и ГУ), сложные и, зачастую, нетривиальные преобразования промежуточных результатов (основанные, например, на исследовании асимптотического поведения функций), программное использование дополнительной и/или специальной информации (например, использование рекуррентных соотношений для некоторых специальных функций, которые пока недоступны средствами MAPLE) и т.п. Более того, при решении сложных задач требуется программирование отдельных этапов решения с последующим объединением промежуточных результатов, а также создания комплексов программ (например, при комплексном аналитическом и численном — решении уравнений и различных способах визуализации и интерпретации результатов).

Для программирования построения формального решения на входном MAPLE-языке необходим ввод необходимой начальной информации (табл. 1) с последующим выполнением определенных алгоритмических операций (табл. 2).

Типы информации при решении дифференциальных уравнений в частных производных средствами MAPLE

Тип информацииСодержаниеОсновная Информация Вызов пакетов расширения.Задание системы координат.Ввод дифференциального уравнения в частных производных.Ввод начальных и граничных условий.Ввод различных функций и операторов.Вызов средств аналитического или численного решения уравнений.Дополнительная информацияПредставление функции при разделении переменных.Выполнение замены переменных(при необходимости).Переопределение постоянных, которые по умолчанию присваиваются пакетом.Ввод математической информации, недопустимой в Maple.Ввод специфических данных(физические параметры, габариты и т.д.).Ввод и вывод информации, связанной с текущим контролем выполняемых операций(получение результата для известного частного случая, контроль другими средствами).Ввод информации о форме представления результата (экспоненциальная, тригонометрическая и т.п. формы решения).Ввод информации для исследования промежуточных и конечных результатов (о порядке разложения в ряд, асимптотике, сравнениях и т.п.).Рабочая информацияПоследовательность вывода полученных результатов.Форматы переменных и данных.Вывод промежуточных результатов.Типы и форматы графиков.Пределы изменения переменных.

Заметим, что если ввод и использование основной информации является хорошо разработанным алгоритмом для многих задач, решаемых в MAPLE, то именно программирование, использование дополнительной и рабочей информации, интерпретация промежуточных результатов и их дальнейшее использование при решении уравнений в частных производных представляет собой основную программную задачу.

При этом программные средства MAPLE дают возможность построения формализма решения в терминах и обозначениях известных классических подходов к решениям таких задач. Возможно, это и не является необходимым моментом, но может оказаться важным не только с точки методической точки зрения, но и по ряду существенных моментов, включающих апробацию разрабатываемых методов решений, их интерпретацию и применение.

Основные типы операций при формальном построении решения дифференциального уравнения в частных производных средствами MAPLE

Тип операцииСодержаниеВыход1. Ввод уравненияПрограммная запись уравнения на входном MAPLE-языке.Уравнение на входном MAPLE-языке.2. Ввод дополнительных данныхПрограммная запись НУ и ГУ.НУ и ГУ на входном MAPLE-языке.3. Использование средств исследования уравнения суммы или произведения функций.Установление порядка ДУ.Вывод ответов программой.Исследование возможности разделения переменных.Определение условий поиска решения в виде.4. Использование средств преобразования уравнения.Выполнение замены переменных.Вывод преобразованного уравнения.Выполнение подстановок.Тип операцииСодержаниеВыход5. Использование основных инструментов решения уравненияПолучение разделенных уравнений по умолчанию с применением команды «pdsolve».Вывод разделенных уравнений.Получение разделенных уравнений в заданном виде с применением операторов «pdsolve» и «hint».Получение решения с применением команды «build» (для тех случаев, когда это возможно).Вывод решения уравнения.6. Использование дополнительных инструментов решения уравненияУчет НУ и ГУ при решении уравнений с применением команды «conds» (для тех случаев,когда это возможно).Вывод решения уравнений с (частичным) учетом НУ и ГУ.Проверка полученного решения с применением команды «pdetest».Вывод результатов проверки.7. Решение разделенных уравнений и учет НУ и ГУ на уровне разделенных уравненийРешение задач на собственные значения и собственные функции.Вывод решений разделенных уравнений в общем виде.Определение собственных значений и собственных функций.Вывод собственных функцийОпределение коэффициентов разложения.8. Построение частного решенияПолучение частного решения исходного уравнения с учетом исходной факторизации при разделении переменных и коэффициентов разложения.Вывод частного решения9. Построение общего решенияПостроение общего решения как суперпозиции частных решений.Вывод общего решенияУчет НУ и определение оставшихся коэффициентов разложения

На основе этих операций можно сформулировать программные алгоритмы построения формальных решений в виде бесконечных рядов, которые необходимо исследовать на сходимость и дифференцируемость. Конечно, операции и действия могут меняться в зависимости от размерности задачи, типов начальных и граничных условий, а также от метода построения решения. Затем (в зависимости от конкретной ситуации) полученные средствами MAPLE решения можно визуализировать и исследовать с целью их интерпретации.

2. Метод разделения переменных

Рассмотрим подробнее метод разделения переменных. Основными этапами построения решения этим методом являются:

) ввод уравнения и разделение переменных;

) решение разделенных уравнений;

) построение общего решения;

) учет начальных условий и определение коэффициентов разложения;

) вывод общего решения в развернутом виде и его преобразование.

В простейших случаях такое количество этапов решения и, следовательно, количество программных позиций, будет достаточно, для многомерных систем число этапов и программных строк может увеличиться.

Для одномерных систем представим функциональные алгоритмы построения решений задачи о теплопроводно

Maple его свойства и возможности

Maple — программный пакет, система компьютерной алгебры. Является продуктом компании Waterloo Maple Inc., которая с 1984 года выпускает программные продукты, ориентированные на сложные математические вычисления, визуализацию данных и моделирование. Система Maple предназначена для символьных вычислений, хотя имеет ряд средств и для численного решения дифференциальных уравнений и нахождения интегралов.

Рисунок 1 Стандартные математические функции

Maple — типичная интегрированная система, которая объединяет в себе:

1) мощный язык программирования (он же язык для интерактивного общения с системой);

2) редактор для подготовки и редактирования документов и программ;

3) современный многооконный пользовательский интерфейс с возможностью работы в диалоговом режиме;

4) мощную справочную систему со многими тысячами примеров;

5) ядро алгоритмов и правил преобразования математических выражений;

6) численный и символьный процессоры;

7) систему диагностики;

8) библиотеки встроенных и дополнительных функций;

9) пакеты функций сторонних производителей и поддержку некоторых других языков программирования и программ [2].

Новые возможности системы Maple

Система Maple приобрела ряд новых возможностей. Кратко отметим их:

1) расширенная поддержка численных алгоритмов пакета программ NAG, в том числе при решении численных задач математического анализа и при решении дифференциальных уравнений;

2) новый обучающий курс User’s Tour, встроенный в ее справку;

3) существенно переработанные и обновленные пакеты функций;

4) ускоренные алгоритмы целочисленных вычислений (например, факториал числа 25000 вычисляется более чем на порядок быстрее, чем системой Maple предыдущей версии);

5) обширный набор новых алгоритмов решения дифференциальных уравнений, обеспечивающий дополнительную эффективность решения задач в области моделирования физических явлений и устройств;

6) выполненное впервые 100% успешное испытание при решении специальных тестовых задач, что является высшим достижением на рынке средств компьютерной математики;

7) усовершенствованные и новые алгоритмы реализации многих численных методов решения задач;

8) новые встроенные пакеты аппроксимации кривых CurveFitting, внешних вычислений ExternalCalling, решения линейных функциональных систем LinearFunctionalSystem, ортогональных рядов OrthogonalSeries, работы с полиномами PolynomialTools, решения уравнений SolveTools и поддержки вычислений с размерными величинами Units;

9) новый пакет для поддержки языка XML;

10) поддержка новейшего стандарта записи математической информации — языка MathML 2.0;

11) улучшение пользовательского интерфейса, в частности введение новой палитры ввода шаблонов векторов;

12) поддержка протокола TCP/IP, обеспечивающего динамический удаленный доступ к данным, например, для финансового анализа в реальном масштабе времени или данных о погоде;

13) дополнительные пакеты (Maple PowerTools™), доступные через Интернет, поддерживающие анализ методом конечных элементов (РЕМ), нелинейную оптимизацию и статистику, а также три новых пакета: вычисления для новичков, теоретическая физика и программирование;

14) возможность работы с курсом университетского математического образования, загружаемого через Интернет.

В сочетании с сохраненными возможностями предшествующей версии системы это дает новой версии Maple обширные возможности в эффективном решении широкого класса математических и научно-технических задач, а также задач в области образования.

1) вычисление сумм последовательностей;

2) вычисление произведений членов последовательностей;

3) вычисление производных;

4) вычисление интегралов;

5) разложение функций в ряд;

6) решение уравнений и неравенств;

7) нахождение сингулярных точек функций;

8) вычисление асимптотических разложений;

9) операции с полиномами;

10) аналитические операции;

11) решение СЛАУ;

12) решение дифференциальных уравнений;

13) численное решение дифференциальных уравнений;

14) возможности трехмерной и двумерной графики;

15) математические пакеты.

Необходимости работы с десятичными эквивалентами в системе Maple имеется команда, аппроксимирующая значение выражения в формате чисел с плавающей запятой. Система Maple вычисляет конечные и бесконечные суммы и произведения, выполняет вычислительные операции с комплексными числами, легко приводит комплексное число к числу в полярных координатах, числовые значения элементарных функций, а также многих специальных функций и констант.

Система Maple предлагает различные способы представления и преобразования выражений, например, такие операции, как упрощение и разложение на множители алгебраических выражений и приведение их к различному виду. Систему Maple можно использовать для решения уравнений и систем алгебраических уравнений.

Maple имеет также множество мощных инструментальных средств для вычисления выражений с одной и несколькими переменными. Систему Maple можно использовать для решения задач дифференциального и интегрального исчисления, вычисления пределов, разложений в ряды, суммирования рядов, умножения, интегральных преобразований (таких как преобразование Лапласа, Z-преобразование, преобразование Меллина или Фурье), непрерывных или кусочно-непрерывных функций.

Система Maple поддерживает сотни специальных функций и чисел, встречающихся во многих областях математики, науки и техники. Вот некоторые из них:

— Эллиптическая интегральная функция ;

— Ступенчатая функция Хевисайда ;

— Бесселева и модифицированная бесселева функции.

Maple может вычислять пределы функций, как конечные, так и стремящиеся к бесконечности, а также распознает неопределенные пределы.

В системе Maple можно решать множество обычных дифференциальных уравнений (ODE), а также дифференциальные уравнения в частных производных (PDE), в том числе задачи с начальными условиями (IVP), и задачи с граничными условиями (BVP).

Одним из наиболее часто используемых в системе Maple пакетов программ является пакет линейной алгебры, содержащий мощный набор команд для работы с векторами и матрицами. Maple может находить собственные значения и собственные векторы, вычислять криволинейные координаты, находить матричные нормы и вычислять множество различных типов разложения матриц.

Для технических применений в Maple включены справочники физических констант и единицы физических величин с автоматическим пересчетом формул[3].

Решение обыкновенных дифференциальных уравнений. Метод Пикара. Примеры решения задачи в Maple Метод пикара решения дифференциальных уравнений

(приближенное решение, в отличие от точного, мы будем обозначать через у). На каждой итерации этого процесса интегрирование выполняется либо точно, либо численными методами, описанными в главе IV.

Докажем сходимость метода, предполагая, что в некоторой ограниченной области правая часть непрерывна и удовлетворяет по переменной и условию Липшица

Поскольку область ограничена, то выполняются соотношения Обозначим погрешность приближенного решения через Вычитая (8) из (9) и используя условие Липшица, получим

Решая это рекуррентное соотношение и учитывая, что найдем последовательно

Отсюда следует оценка погрешности

Видно, что при , т. е. приближенное решение равномерно сходится к точному во всей области .

Пример. Применим метод Пикара к задаче Коши для уравнения (3), решение которого не выражается через элементарные функции

В этом случае квадратуры (9) вычисляются точно, и мы легко получаем

и т. д. Видно, что При эти приближения быстро сходятся и позволяют вычислить решение с высокой точностью,

Из этого примера видно, что метод Пикара выгодно применять, если интегралы (9) удается вычислить через элементарные функции. Если же правая часть уравнения (7) более сложна, так что эти интегралы приходится находить численными методами, то метод Пикара становится не слишком удобным.

Метод Пикара легко обобщается на системы уравнений способом, описанным в п. 2. Однако на практике чем выше порядок системы, тем реже удается точно вычислять интегралы в (9), что ограничивает применение метода в этом случае.

Имеется много других приближенных методов. Например, С. А. Чаплыгин предложил метод, являющийся обобщением алгебраического метода Ньютона на случай дифференциальных уравнений. Другой способ обобщений метода Ньютона предложил Л. В. Канторович в 1948 г. В обоих этих методах, так же как и в методе Пикара, итерации выполняются при помощи квадратур. Однако квадратуры в них имеют гораздо более сложный вид, чем (9), и редко берутся в элементарных функциях. Поэтому эти методы почти не применяют.

Цель работы: сформировать у студентов представление о применении ДУ в различных областях; привить умения решать задачу Коши для ДУ у » = f (x , y ) на отрезке [ a , b ] при заданном начальном условии у 0 = f (x 0) методами Пикара, Эйлера, Рунге – Кутты, Адамса; развить навыки проверки полученных результатов с помощью прикладных программ.

Метод Пикара

: у h = 0,1 методом Пикара с шагом h .

В отчете представить: ход работы, программу – функцию, погрешность, графическую иллюстрацию решения.

1. Вводим данные (рис. 5.1)

a = 1,7 b = 2,7

y 0 = 5,3 i = 0..n

Рис.5.1. Задание исходных данных

2. Задаем функцию, возвращающую значения первой производной по переменной у (рис.5.2).

f derive(y ) =

Рис.5.2. Функция, возвращающая значение первой производной функции

3. Составим функцию, возвращающую решение ДУ методом

Пикара. Здесь: f – исходнаяфункция; f deriv

Производная функции по у ; a ,b – концы отрезка; h – шаг; у 0 –

начальное значение переменной у .

4. Найдем решение ДУ методом Пикара (рис. 5.3).

fnPikan(fn, fn derive, a, b, h, y0)=

Рис. 5.3. Задание функции, возвращающей решение ДУ

методом Пикара (файл fnPikar.mcd)

fnPikar(f, f derive, a, b, 0.1, y0) =

7,78457519486·10 -11
5,3
5,46340155616
5,62650688007
5,78947945853
5,95251650231
6,11584391144
6,27971330675
6,44440084325
6,61020759752
6,77746140952
6,94652015221

Рис. 5.4. Нахождение численного решения ДУ методом Пикара

Метод Эйлера и его модификации

у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Эйлера и усовершенствованным методом Эйлера с шагами h и h /2.

Ход решения задачи по методу Эйлера приведен на рис. 5.5 – 5.7.

а = 1,7 b = 2,7 у0 = 5,3

y 0 = y0 x i = a + ih h2 = 0,05

Рис5.5. Фрагмент рабочего листа Маthcad с решением

уравнения методом Эйлера с шагом h и h /2 и графической

визуализацией метода Эйлера.

1. Составим программу, реализующую метод Эйлера(рис.

Рис.5.6. Листинг программы, реализующий метод Эйлера

2. Получим решение ДУ методом Эйлера(рис. 5.7.).

ES h = eyler(f, a, b, h, y0)

ES h2 = eyler(f, a, b, , y0)

Рис. 5.7. Нахождение численного решения ДУ методом Эйлера

Функцию, возвращающую решение ДУ усовершенствованным методом Эйлера, составить самостоятельно.

Рис. 5.8. Решение ДУ усовершенствованным методом

Эйлера с шагами h и h /2

5.3. Метод Рунге – Кутты

На практике наиболее часто используют метод Рунге – Кутты четвертого порядка.

Решить задачу Коши для ДУ на отрезке при заданном НУ у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Рунге – Кутты четвертого порядка с шагом h и 2h .

В отчете представить: ход работы, программу функцию, погрешность, графическую иллюстрацию решения и оценку погрешности приближения.

1. Вводим данные задачи (рис. 5.9).

a = 1,7 b = 2,7

Рис.5.9. Задание исходных данных

2. Составим функцию, возвращающую решение ДУ первого порядка методом Рунге – Кутты. Здесь: fn – заданная функция; a , b – концы отрезка; h – шаг; y 0 – начальное значение функции.

3. Найдем решение ДУ первого порядка, используя встроенные функции Mathcad (рис. 5.10).

RK h = fnRungeKutta(f, a, b, h, y0)

RK 2h = fnRungeKutta(f, a, b, 2h, y0)

Рис. 5.10. Листинг функции, возвращающей численное

решение ДУ методом Рунге–Кутты

Метод Адамса

Решить задачу Коши для ДУ на отрезке при заданном НУ у (1,7) = 5,3 и шаге интегрирования h = 0,1 методом Адамса с шагом h .

В отчете представить: ручной счет, программу – функцию, погрешность, графическую иллюстрацию решения и оценку погрешности приближения.

1. Найдем первые четыре числа по формуле Рунге–Кутты (рис. 5.11).

y i = fnRungeKutta(f, a, b, h, y0) i

Рис. 5.11. Вычисление первых четырех значений численного решения по формуле Рунге–Кутты

2. Составим функцию, реализующую метод Адамса (рис. 2.10.3). Здесь a , b – концы отрезка; y 1 – начальное значение функции; h – шаг.

Рис. 5.12. Функция, возвращающая численное решение

ДУ методом Адамса

3. Графическая иллюстрация решения ДУ разными методами представлена на рис. 5.13.

Рис. 5.13. Визуализация решения ДУ разными методами

Вопросы по теме

1. Что значит – решить задачу Коши для ДУ первого порядка?

2. Графическая интерпретация численного решения ДУ.

3. Какие существуют методы решения ДУ в зависимости от

формы представления решения?

4. В чем заключается суть принципа сжимающих

5. Рекуррентная формула метода Пикара.

6. В чем заключается суть метода ломаных Эйлера?

7. Применение, каких формул позволяет получить значения

искомой функции по методу Эйлера?

8. Графическая интерпретация метода Эйлера и

усовершенствованного метода Эйлера. В чем их отличие?

9. В чем заключается суть метода Рунге–Кутты?

10. Как определить количество верных цифр в числе,

являющемся решением ДУ методом Эйлера,

усовершенствованного метода Эйлера, Пикара, Рунге–

Задание к лабораторной работе № 5

Решить задачу Коши для ДУ y ’ = f (x , y ) на отрезке [a , b ] при заданном НУ у (а ) = с и шаге интегрирования h (исходные параметры заданы в табл. 2.10.1):

1) методом Эйлера и усовершенствованным методом Эйлера с шагом h и h /2;

2) методом Рунге–Кутты с шагом h и 2h ;

3) методом Адамса;

4) методом Пикара.

Решение должно содержать: ход работы, программу метода, графическое решение уравнения и оценка погрешности приближения. В числах оставлять 5 цифр после запятой.

Таблица 5.1. Варианты заданий для выполнения самостоятельной работы

f(x , y ) [a , b ] y 0 h
3х 2 + 0,1ху у (0) = 0,2 0,1
0,185(x 2 + cos(0,7x )) + 1,843y у (0,2) = 0,25 0,1
у (1,6) = 4,6 0,1
у (0,2) = 1,1 0,1
у (1,4) = 2,5 0,1
у (1,7) = 5,3 0,1
у (2,6) = 3,5 0,2
у (2) = 2,3 0,1
1,6 + 0,5y 2 у (0) = 0,3 0,1
у (1,8) = 2,6 0,1
у (2,1) = 2,5 0,1
e 2x + 0,25y 2 у (0) = 2,6 0,05
[- 2; -1] у (-2) = 3 0,1
0,133·(x 2 + sin(2x )) + 0,872y у (0,2) = 0,25 0,1
sin(x + y ) +1,5 у (1,5) = 4,5 0,1
у (0,4) = 0,8 0,1
2,5x + cos(y + 0,6) у (1) = 1,5 0,2
cos(1,5y +x ) 2 + 1,4 у (1) = 1,5 0,1
у (1,5) = 2,1 0,05
cos y + 3x у (0) = 1,3 0,1
cos(1,5xy 2) – 1,3 [-1; 1] у (-1) = 0,2 0,2
у (1,6) = 4,6 0,1
e -(y – 1) + 2x у (0) = 0,3 0,05
1 + 2y sin xy 2 у (1) = 0 0,1
у (0) = 0 0,1
0,166(x 2 + sin(1,1x )) + 0,883y у (0,2) = 0,25 0,1
у (1,7) = 5,6 0,1
у (1,4) = 2,5 0,1
у (0,6) = 0,8 0,1
у (1) = 5,9 0,1
1 + 0,8y sin x — 2y 2 у (0) = 0 0,1
у (0,5) = 1,8 0,1
у (1,2) = 1,8 0,1
1 + 2,2 · sin x + 1,5y 2 у (0) = 0 0,1
у (0) = 0 0,1
у (0) = 0 0,1
у (0) = 0 0,1
0,2x 2 + y 2 у (0) = 0,8 0,1
x 2 + y у (0) = 0,4 0,1
xy + 0,1y 2 у (0) = 0,5 0,1

Основная литература :

Алексеев Г.В., Вороненко Б.А., Лукин Н.И. Математические методы в

пищевой инженерии: Учебное пособие. – СПб.: «Лань», 2012. – 212 с.

Алексеев Г.В. Математические методы в инженерии: Учеб.-метод. пособие. – СПб.: НИУ ИТМО; ИХиБТ. 2012. – 39 с.

Алексеев Г.В., Холявин И.И. Численное экономико-математическое моделирование и оптимизация: учебное пособие для вузов, ГИЭФПТ, 2011, 211 с.

Макаров Е.Г. Mathcad: Учебный курс. – СПб.: Питер, 2009. — 384 с.

Поршнев С.В.,Беленкова И.В. Численные методы на базе Mathcad. –

СПб.: БХВ-Петербург, 2005. – 464 с.

Агапьев Б.Д., Белов В.Н., Кесаманлы Ф.П., Козловский В.В., Марков С.И. Обработка экспериментальных данных: Учеб. пособие / СПбГТУ. СПб., 2001.

ГореловаГ.В. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel. – М.: Феникс, 2005. – 476 с.

Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий.-М.: Наука, 1976

Асатурян В.И. Теория планирования эксперимента.-М.: Радио и связь, 1983

Бродский В.З. Введение в факторное планирование эксперимента.-М.: Наука, 1976

Демиденко Е.З. Линейная и нелинейная регрессия.-М.: Финансы и статистика, 1981

Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента.-Минск: БГУ, 1982

Маркова Е.В., Лисенков А.Н. Комбинаторные планы в задачах многофакторного эксперимента.-М.: Наука,1979

Фролькис В.А. Линейная и нелинейная оптимизация.-СПб. 2001. 306 с.

Курицкий Б.Я. Поиск оптимальных решений средствами Excel 7.0.-СПб.: BHV,1997,384с

http://www.open-mechanics.com/journals — Процессы и аппараты пищевых производств

http://www.spbgunpt.narod.ru/ur_gigm.htm — Механика жидкости и газа, гидравлика и гидравлические машины

http://elibrary.ru/defaultx.asp — научная электронная библиотека «Elibrary»

1.Лабораторная работа №1: Теория приближенных вычислений

1.1. Абсолютная и относительная погрешности

1.2. Погрешность округленного числа

1.3. Погрешности арифметических действий

1.5. Способ границ

1.6. Обратная задача теории погрешностей

1.7. Вопросы по теме

1.8. Задания к лабораторной работе №1

2.Лабораторная работа №2:Численные методы решения

1.2. Метод касательных

1.3. Метод простой итерации

1.4. Вопросы по теме

1.5. Задания к лабораторной работе №2

3.Лабораторная работа №3: Численные методы решения систем

3.1. Метод Ньютона

3.2. Вопросы по теме

3.3. Задание к лабораторной работе №3

4.Лабораторная работа№4: Численное интегрирование

4.1. Метод прямоугольников

4.2. Метод Симпсона

4.3. Метод трапеций

4 .4. Метод Монте – Карло

4.5. Вопросы по теме

4.6. Задание к лабораторной работе №4

5. Лабораторная работа №5: Решение обыкновенных дифференциальных уравнений

5.1. Метод Пикара

5.2. Метод Эйлера и его модификации

5.3. Метод Рунге – Кутты

Данный метод является представителем класса приближенных методов

Идея метода чрезвычайно проста и сводится к процедуре последова-

тельных приближений для решения интегрального уравнения, к которому

приводится исходное дифференциальное уравнение.

Пусть поставлена задача Коши

,

Проинтегрируем выписанное уравнение

. (5.2)

Процедура последовательных приближений метода Пикара реализуется согласно следующей схеме

, (5.3)

Пример . Решить методом Пикара уравнение

,

Решение этого уравнения не выражается через элементарные функции.

,

Видно, что при ряд быстро сходится. Метод удобен, если интегралы можно взять аналитически.

Докажем сходимость метода Пикара. Пусть в некоторой ограниченной

области правая частьнепрерывна и, кроме того, удовлетворяет условию Липшица по переменнойт.е.

где — некоторая константа.

В силу ограниченности области имеют место неравенства

Вычтем из (5.3) формулу (5.2), получим для модулей правой и левой

,

.

Окончательно, используя условие непрерывности Липшица, получим

, (5.4)

где — погрешность приближенного решения.

Последовательное применение формулы (5.4) при дает следующую цепочку соотношений при учете того, что

,

,

.

.

Заменяя по формуле Стирлинга, окончательно получим оценку погрешности приближенного решения

. (5.5)

Из (5.4) следует, что при модуль погрешности, т.е.

приближенное решение равномерно сходится к точному.

5.2.2. Методы Рунге-Кутта

Данные методы являются численными.

На практике применяются методы Рунге-Кутта, обеспечивающие пост-

роение разностных схем (методов) различного порядка точности. Наиболее

употребительны схемы (методы) второго и четвертого порядков. Их мы и

Предварительно введем некоторые понятия и определения. Сеткой на

отрезке называется фиксированное множество точек этого отрезка.

Функция, определенная в данных точках, называется сеточной функцией.

Координаты точек удовлетворяют условиям

Точки являются узлами сетки. Равномерной сеткой наназывается множество точек

, ,

При решении дифференциальных уравнений приближенным методом основным является вопрос о сходимости. Применительно к разностным методам традиционно более употребительно понятие сходимости при . Обозначим значения сеточной функциизначения точного решения дифференциального уравнения (5.1) в узле-(являются приближенными значениями). Сходимость приозначает следующее. Фиксируем точкуи строим совокупность сетоктаким образом, чтои(при этом). Тогда считают, что численный метод сходится в точке, если

при ,. Метод сходится на отрезке, если он сходится в каждой точке. Говорят, что метод имеет-й порядок точности, если можно найти такое число, чтопри.

Введем далее понятие невязки или погрешности аппроксимции разностного уравнения, заменяющего заданное дифференциальное уравнение, на решении исходного уравнения, т.е. невязка представляет собой результат подстановки точного решения уравнения (5.1)в разностное уравнение. Например, (5.1) можно заменить следующим простейшим разностным уравнением

, .

Тогда невязка определится следующим выражением

.

Приближенное решение не совпадает вообще говоря с , поэтому невязкав-ой точке не равна нулю. Вводят следующее определение: численный метод аппроксимирует исходное дифференциальное уравнение, еслипри, и имеет-й порядок точности, если.

Доказывается, что порядок точности численного метода решения дифференциального уравнения совпадает с порядком аппроксимации при достаточно общих предположениях.

Теперь перейдем к анализу схем Рунге-Кутта. Сначала обратимся к

схемам второго порядка точности.

Используя формулу Тейлора, решение дифференциального уравнения

(5.1) можно представить в виде

, (5.6)

где обозначено ,,.

Отметим, что согласно (5.1) ,.

производную следующим образом

,

где — пока неизвестные величины. Пусть

Обозначим приближенное значение решения в узле с номером через(именно это решение будет получаться после того, как мы ограничим ряд членами с порядком не выше второго).

Введенные здесь параметры иподлежат определению.

Разлагая правую часть в ряд Тейлора и приводя подобные члены, получим

Условием выбора параметров ипоставим близость выраже-

ния (5.7) ряду (5.6), тогда

, ,.

Один параметр остается свободным. Пусть это будет , тогда

, ,

и окончательно из (5.7) с учетом найденных отношений для и

Соотношение (5.8) описывает однопараметрическое семейство двучленных формул Рунге-Кутта.

В специальной литературе доказывается, что если непрерывна и ограничена вместе со своими вторыми производными, то приближенное решение схемы (5.8) равномерно сходится к точному решению с погрешностью, т.е. схема (5.8) обладает вторым порядком точности.

В практике расчетов используют формулы (5.8) при значениях параметра ,.

Применение формулы (5.9) сводится к следующей последовательности шагов:

1. Вычисляется грубо значение функции (по схеме ломаных)

2. Определяется наклон интегральной кривой в точке ()

3. Находится среднее значение производной функции на шаге

4. Рассчитывается значение функции в ()-м узле

Данная схема имеет специальное название «предиктор — корректор».

Согласно (5.8) получаем

Задача решается посредством следующих шагов:

1. Вычисляется значение функции в половинном узле

.

2.Определяется значение производной в узле

.

3. Находится значение функции в ()-м узле

Помимо рассмотренных выше двучленных схем широкое распространение в практике расчетов имеют схемы Рунге-Кутта четвертого порядка точности. Ниже даются без вывода соответствующие формулы

(5.10)

Схемы с большим числом членов практически не применяются. Пяти-

членные формулы обеспечивают четвертый порядок точности, шестичленные формулы имеют шестой порядок, но их вид весьма сложен.

Погрешности приведенных схем Рунге-Кутта определяются максималь-

ными значениями соответствующих производных.

Оценку погрешностей легко получить для частного случая правой

части дифференциального уравнения

.

В этом случае решение уравнения может быть сведено к квадратуре и

все схемы разностного решения переходят в формулы численного интегри-

рования. Например, схема (5.9) принимает вид

,

то есть имеет вид формулы трапеций, а схема (5.10) переходит в схему

представляющую собой формулу Симпсона с шагом .

Мажорантные оценки погрешности формул трапеций и Симпсона известны (см. раздел 3.2). Из (3.4) и (3.5) видно, что точность схем Рунге-Кутта достаточно высока.

Выбор той или иной из приведенных схем для решения конкретной за-

дачи определяется следующими соображениями. Если функция в

правой части уравнения непрерывна и ограничена, а также непрерывны и

ограничены ее четвертые производные, то наилучший результат достигает-

ся при использовании схемы (5.10). В том случае, когда функция

не имеет названных выше производных, предельный (четвертый) порядок

схемы (5.10) не может быть достигнут, и целесообразным оказывается

применение более простых схем.

Помимо схем Рунге-Кутта практический интерес представляют многошаговые методы, которые можно описать следующей системой уравнений

где , а- числовые коэффициенты,,.

Согласно данному уравнению расчет начинается с . В этом случае получается соотношение вида

т.е. для начала счета надо иметь начальных значений,. Эти значенияприходится вычислять каким-либо другим методом, например, методом Рунге-Кутта.

Среди многошаговых методов наиболее распространен метод Адамса, схема реализации которого следует из (5.11) при идля:

.

Похожие публикации:

  1. Как можно создать бота в мессенджере telegram
  2. Как найти недостающие библиотеки с проекта archicad
  3. Как написать telegram бота на java
  4. Как обновить telegram на андроиде

Решение системы дифф. уравнений

Введите систему дифференциальных уравнений, которую надо решить.
Ниже есть несколько примеров решаемы систем.

Примеры решаемых систем дифф. уравнений

С системой однородных дифференциальных уравнений первого порядка

x′ = y^2 + 4xy + 2x^2 y′ = x + 8y / 8x + y
x′ = x^2 − y^2 y′ = y^2 + 12x^2 + 8xy

С системой дифференциальных уравнений высших порядков

x′ = 3 + cos^2 2y y′ = ln x / x^2

С разделяющимися переменными

x′ = − x^2y y′ = e^x−y

© Контрольная работа РУ — калькуляторы онлайн

Как решить систему линейных уравнений?

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод»);
– Решение системы методом почленного сложения (вычитания) уравнений системы;
– Решение системы по формулам Крамера;
– Решение системы с помощью обратной матрицы;
– Решение системы методом Гаусса.

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Решить систему линейных уравнений:

Здесь у нас дана система двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левых частях уравнений. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при желании систему можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений). Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой. Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем: из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ:

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе). Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше внимание на то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях.

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом. Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции. Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных.

Теперь всё просто: – подставляем в первое уравнение системы (можно и во второе, но это не так выгодно – там числа больше):

В чистовом оформлении решение должно выглядеть примерно так:

У некоторых явно возник вопрос: «Зачем все эти изыски, если можно просто выразить одну переменную через другую и подставить во второе уравнение?».

Решить систему линейных уравнений:

В данном примере можно использовать «школьный» метод, но большой минус состоит в том, что когда мы будем выражать какую-либо переменную из любого уравнения, то получим решение в обыкновенных дробях. А возня с дробями займет время, к тому же, если у Вас не «набита рука» на действиях с дробями, то велика вероятность допустить ошибку.

Поэтому целесообразно использовать почленное сложение (вычитание) уравнений. Анализируем коэффициенты при соответствующих переменных:

Как видим числа в парах (3 и 4), (4 и –3) – разные, поэтому, если сложить (вычесть) уравнения прямо сейчас, то от переменной мы не избавимся. Таким образом, хотелось бы видеть в одной из пар одинаковые по модулю числа, например, 20 и 20 либо 20 и –20.

Будем рассматривать коэффициенты при переменной :

Подбираем такое число, которое делилось бы и на 3 и на 4, причем оно должно быть как можно меньше. В математике такое число называется наименьшим общим кратным. Если Вы затрудняетесь с подбором, то можно просто перемножить коэффициенты:

Далее:
Первое уравнение умножаем на
Второе уравнение умножаем на

Вот теперь из первого уравнения почленно вычитаем второе. На всякий случай привожу еще раз действия, которые проводятся мысленно:

Следует отметить, что можно было бы наоборот – из второго уравнения вычесть первое, в результате получится равносильное уравнение с противоположными знаками.

Теперь подставляем найденное значение в какое-нибудь из уравнений системы, например, в первое:

Решим систему другим способом. Рассмотрим коэффициенты при переменной

Очевидно, что вместо пары коэффициентов (4 и –3) нам нужно получить 12 и –12.
Для этого первое уравнение умножаем на 3, второе уравнение умножаем на 4:

Почленно складываем уравнения и находим значения переменных:

Второй способ несколько рациональнее, чем первый, так как складывать проще и приятнее чем вычитать.

В высшей математике всегда стремимся складывать и умножать, а не вычитать и делить.

Решить систему линейных уравнений:

Это пример для самостоятельного решения (ответ в конце урока).

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *